Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
N naukrinfo
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
Collapse sidebar
  • Inge Talbert
  • naukrinfo
  • Issues
  • #1

Closed
Open
Created Feb 20, 2025 by Inge Talbert@ingetalbert87Maintainer

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled variations varying from 1.5 to 70 billion specifications to develop, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled variations of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that utilizes reinforcement learning to improve thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. An essential identifying function is its support knowing (RL) step, which was utilized to fine-tune the model's actions beyond the basic pre-training and tweak procedure. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and goals, eventually enhancing both relevance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, implying it's geared up to break down complicated inquiries and factor through them in a detailed manner. This directed reasoning procedure permits the design to produce more accurate, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT capabilities, aiming to create structured actions while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has recorded the market's attention as a versatile text-generation model that can be incorporated into various workflows such as representatives, sensible thinking and information interpretation jobs.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion parameters, enabling effective reasoning by routing queries to the most appropriate professional "clusters." This method allows the model to focus on various issue domains while maintaining overall performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 design to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more effective models to mimic the behavior and thinking patterns of the larger DeepSeek-R1 design, utilizing it as a teacher design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise deploying this design with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent damaging content, and assess models against crucial security criteria. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to different usage cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limitation increase, develop a demand and reach out to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For guidelines, see Set up permissions to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, avoid hazardous material, and examine models against key safety requirements. You can implement precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to assess user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general flow includes the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for reasoning. After receiving the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the last result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, pick Model brochure under Foundation designs in the navigation pane. At the time of writing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and select the DeepSeek-R1 model.

The design detail page provides important details about the design's abilities, pricing structure, and execution standards. You can find detailed use instructions, including sample API calls and code bits for integration. The model supports numerous text generation tasks, including material development, code generation, and question answering, utilizing its support discovering optimization and CoT thinking abilities. The page also consists of deployment options and licensing details to help you start with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, choose Deploy.

You will be triggered to configure the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Number of circumstances, get in a variety of instances (between 1-100). 6. For example type, select your circumstances type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can set up advanced security and facilities settings, consisting of virtual personal cloud (VPC) networking, service role approvals, and file encryption settings. For many utilize cases, the default settings will work well. However, for production releases, you might wish to evaluate these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to begin using the design.

When the implementation is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock play area. 8. Choose Open in play ground to access an interactive interface where you can explore various triggers and adjust design parameters like temperature level and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for ideal results. For instance, material for inference.

This is an excellent method to explore the design's thinking and text generation capabilities before integrating it into your applications. The play area provides instant feedback, assisting you comprehend how the design reacts to various inputs and letting you tweak your triggers for optimum outcomes.

You can rapidly check the model in the playground through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference utilizing a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures inference parameters, and sends a request to produce text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 convenient approaches: utilizing the intuitive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both methods to assist you pick the technique that best fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model web browser displays available designs, with details like the provider name and model abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card. Each design card reveals essential details, including:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if appropriate), showing that this model can be signed up with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to invoke the design

    5. Choose the model card to view the design details page.

    The model details page consists of the following details:

    - The design name and service provider details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you deploy the design, it's advised to examine the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, use the automatically generated name or produce a custom-made one.
  1. For Instance type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For engel-und-waisen.de Initial instance count, enter the number of circumstances (default: 1). Selecting suitable circumstances types and counts is vital for expense and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this design, we strongly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to deploy the model.

    The implementation process can take a number of minutes to finish.

    When release is total, your endpoint status will change to InService. At this moment, the design is prepared to accept reasoning demands through the endpoint. You can keep track of the release development on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the implementation is total, you can invoke the model utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To begin with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for reasoning programmatically. The code for releasing the design is supplied in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To avoid undesirable charges, complete the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you deployed the design utilizing Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations.
  5. In the Managed releases area, locate the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the proper deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct innovative solutions using AWS services and accelerated compute. Currently, he is focused on establishing techniques for fine-tuning and enhancing the reasoning performance of big language models. In his spare time, Vivek enjoys hiking, enjoying movies, and attempting various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing options that help customers accelerate their AI journey and unlock business worth.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking